395 research outputs found

    Matrix Black Holes

    Get PDF
    Four and five dimensional extremal black holes with nonzero entropy have simple presentations in M-theory as gravitational waves bound to configurations of intersecting M-branes. We discuss realizations of these objects in matrix models of M-theory, investigate the properties of zero-brane probes, and propose a measure of their internal density. A scenario for black hole dynamics is presented.Comment: 26 pages, harvmac; a few more references and additional comment

    Annulus Amplitudes in the Minimal Superstring

    Full text link
    We study the annulus amplitudes in the (2,4) minimal superstring theory using the continuum worldsheet approach. Our results reproduce the semiclassical behavior of the wavefunctions of FZZT-branes recently studied in hep-th/0412315 using the dual matrix model. We also study the multi-point functions of neutral FZZT-branes and find the agreement between their semiclassical limit and the worldsheet annulus calculation.Comment: 15 pages, lanlma

    On the Boundary Dynamics of Chern-Simons Gravity

    Get PDF
    We study Chern-Simons theory with a complex G_C or a real G x G gauge group on a manifold with boundary - this includes Lorentzian and Euclidean (anti-) de Sitter (E/A)dS gravity for G=SU(2) or G=SL(2,R). We show that there is a canonical choice of boundary conditions that leads to an unambiguous, fully covariant and gauge invariant, off-shell derivation of the boundary action - a G_C/G or G WZW model, coupled in a gauge invariant way to the boundary value of the gauge field. In particular, for (E/A)dS gravity, the boundary action is a WZW model with target space (E/A)dS_3, reminiscent of a worldsheet for worldsheet mechanism. We discuss in some detail the properties of the boundary theories that arise and we confront our results with various related constructions in the literature.Comment: 22 pages, LaTeX2e, v2: JHEP3.cls, references and a footnote adde

    Rolling Tachyons from Liouville theory

    Full text link
    In this work we propose an exact solution of the c=1 Liouville model, i.e. of the world-sheet theory that describes the homogeneous decay of a closed string tachyon. Our expressions are obtained through careful extrapolation from the correlators of Liouville theory with c > 25. In the c=1 limit, we find two different theories which differ by the signature of Liouville field. The Euclidean limit coincides with the interacting c=1 theory that was constructed by Runkel and Watts as a limit of unitary minimal models. The couplings for the Lorentzian limit are new. In contrast to the behavior at c > 1, amplitudes in both c=1 models are non-analytic in the momenta and consequently they are not related by Wick rotation.Comment: 22 page

    A Note on c=1 Virasoro Boundary States and Asymmetric Shift Orbifolds

    Get PDF
    We comment on the conformal boundary states of the c=1 free boson theory on a circle which do not preserve the U(1) symmetry. We construct these Virasoro boundary states at a generic radius by a simple asymmetric shift orbifold acting on the fundamental boundary states at the self-dual radius. We further calculate the boundary entropy and find that the Virasoro boundary states at irrational radius have infinite boundary entropy. The corresponding open string description of the asymmetric orbifold is given using the quotient algebra construction. Moreover, we find that the quotient algebra associated with a non-fundamental boundary state contains the noncommutative Weyl algebra.Comment: 21 pages, harvmac; v2: minor clarification in section 3.4; v3: a discussion on cocycles added in section 2, and low energy limit mistake removed and clarifications added in section 4.

    Noncritical String Correlators, Finite-N Matrix Models and the Vortex Condensate

    Get PDF
    We carry out a systematic study of correlation functions of momentum modes in the Euclidean c=1 string, as a function of the radius and to all orders in perturbation theory. We obtain simple explicit expressions for several classes of correlators in terms of special functions. The Normal Matrix Model is found to be a powerful calculational tool that computes c=1 string correlators even at finite N. This enables us to obtain a simple combinatoric formula for the 2n-point function of unit momentum modes, which after T-duality determines the vortex condensate. We comment on possible applications of our results to T-duality at c=1 and to the 2d black hole/vortex condensate problem.Comment: 38 pages, LaTe

    c=1 Matrix Models: Equivalences and Open-Closed String Duality

    Get PDF
    We give an explicit demonstration of the equivalence between the Normal Matrix Model (NMM) of c=1 string theory at selfdual radius and the Kontsevich-Penner (KP) model for the same string theory. We relate macroscopic loop expectation values in the NMM to condensates of the closed string tachyon, and discuss the implications for open-closed duality. As in c<1, the Kontsevich-Miwa transform between the parameters of the two theories appears to encode open-closed string duality, though our results also exhibit some interesting differences with the c<1 case. We also briefly comment on two different ways in which the Kontsevich model originates.Comment: 27 pages, latex, 1 figure, typos, discussion added, acknowledgements update

    Localized Tachyons and the g_cl conjecture

    Full text link
    We consider C/Z_N and C^2/Z_N orbifolds of heterotic string theories and Z_N orbifolds of AdS_3. We study theories with N=2 worldsheet superconformal invariance and construct RG flows. Following Harvey, Kutasov, Martinec and Moore, we compute g_cl and show that it decreases monotonically along RG flows- as conjectured by them. For the heterotic string theories, the gauge degrees of freedom do not contribute to the computation of g_cl.Comment: Corrections and clarifications made, 19 page

    Semi-Classical Mechanics in Phase Space: The Quantum Target of Minimal Strings

    Full text link
    The target space Mp,qM_{p,q} of (p,q)(p,q) minimal strings is embedded into the phase space of an associated integrable classical mechanical model. This map is derived from the matrix model representation of minimal strings. Quantum effects on the target space are obtained from the semiclassical mechanics in phase space as described by the Wigner function. In the classical limit the target space is a fold catastrophe of the Wigner function that is smoothed out by quantum effects. Double scaling limit is obtained by resolving the singularity of the Wigner function. The quantization rules for backgrounds with ZZ branes are also derived.Comment: 16 pages, 6 figure
    • …
    corecore